
Inequality involving equilateral triangles

https://www.linkedin.com/groups/8313943/8313943-6401714465150156803

Let ABC be an equilateral triangle with side-length a and let P be any point

inside the triangle. Prove that

a2/2  xPA  yPB  zPC  2xy  yz  zx

where x,y, z denote the distances from P to the sides BC,CA,AB, respectively.

Solution by Arkady Alt, San Jose,California, USA.

Since the letters x,y, z will be needed for other purposes we will use common notation

da,db,dc for the distances from P to the sides BC,CA,AB, respectively.

Then inequality of the problem in such notation becomes

(1) a2/2  da  PA  2dadb .

Let Fa,Fb,Fc,F be areas of PBC,PCA,PBC,ABC, respectively and let x : Fa
F
,

y : Fb
F
, z : Fc

F
be baricentric coordinates of P (with respect to ABC), that is

x,y, z  0 and x  y  z  1.Since PA  y  zAK, where AK is a cevian from vertex A
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y2b2  z2c2  yzb2  c2  a2 then PA  y2b2  z2c2  yzb2  c2  a2 .

Also note that da  2Fa
a  2xF

a . Hence,

da  PA  2F
a  x y2b2  z2c2  yzb2  c2  a2

and since in our case a  b  c,F 
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By Cauchy Inequality x y2  yz  z2   x xy2  xyz  xz2 

x  y  z  xy2  xyz  xz2  x  y  zxy  yz  zx  xy  yz  zx

and since xy  yz  zx 
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.

RHS of (1), unlike LHS of (1), holds for any triangle.

Indeed, since* PA  bdb  cdc
a thenda  PA  da 

bdb  cdc
a   bdadb  cdcda

a 

dadb b
a  a

b
 2dadb  2dadb .

* Proof of inequality PA  bdb  cdc
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From similarity PLA  CDA and PKA  BEA we obtain,respectively:
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 h1Ra  bdb and
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c  h2Ra  cdc.

Hence, Rah1  h2  bdb  cdc and since a  h1  h2 we finally obtain

aRa  Rah1  h2  bdb  cdc.

Equality holds iff AP  BC.


